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Received 19 February 1980 

Abstract. The motion of a non-relativistic free charged particle in a classical electromag- 
netic plane wave field is investigated. By introducing the ansatz of a modulated plane wave 
for the wavefunction, the problem is reduced to the solution of the general Mathieu 
equation for a circularly polarised field and to the solution of the Hill equation for a linearly 
polarised field. The corresponding eigenvalue equations show that physical values of the 
energy are separated into bands. The relationship with earlier methods is also discussed. 

1. Introduction 

In connection with the development of high power lasers, in recent years much effort 
has been devoted to the experimental and theoretical investigation of the interaction of 
an intense radiation field with matter. The present paper deals with the theoretical 
aspects of the interaction of non-relativistic free electrons with an external plane 
electromagnetic field. This problem originally started with the exact solution of the 
Dirac equation for a plane electromagnetic wave under specially chosen initial condi- 
tions (Volkov 1935). This paper did not, however, call much attention to itself because 
the appropriate light source was not available at the time. With the invention of the 
laser, theoretical interest has been renewed, and different exact and approximative 
solutions have been given by several authors, choosing other special initial conditions 
and methods of description (relativistic versus non-relativistic, quantum mechanical 
versus quantum electrodynamical). A review of the extended work performed in the 
60’s in this field is given by Eberly (1969). Here we just briefly recall the main steps 
leading to analytical expressions of the wavefunction. Shortly after the Volkov solution 
appeared, another exact solution of the Dirac equation with somewhat different initial 
conditions was presented and applied to the Compton scattering in intense fields 
(Alperin 1944). The solution of the Klein-Gordon equation of a relativistic scalar 
charged particle in an external field was given by Brown and Kibble (1964). The 
non-relativistic problem was concerned with using the corresponding Schrodinger 
equation (Nickle 1966). In Nickle’s paper an ‘almost’*exact solution of the Schrodinger 
equation for a non-relativistic free electron interacting with an external field was given. 
Exact solutions were obtained only in the dipole approximation (Keldysh 1965, Kohler 
1966). The same problem was reinvestigated from a different point of view, and 
analytical results were obtained beyond the dipole approximation only very recently 
(Ehlotzky 1978). In the last-cited paper a natural extension of the dipole result is given 
in analytical form. Reviews of recent analytical results are also given by the present 
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authors (Bergou 1980, Bergou and Varr6 1980). Nevertheless, in spite of the fact that 
exact analytical solutions exist for the classical equation of motion of a free charged 
particle in an external field, both relativistic and non-relativistic (Sengupta 1949, 
Vachaspati 1963), as well as for the relativistic quantum mechanical counterpart, by 
using either the Dirac or the Klein-Gordon equation, at present no analytical solution is 
available for the corresponding non-relativistic quantum mechanical problem. In this 
paper we proceed further along the lines followed by Ehlotzky and, in the following, by 
introducing some obvious physical assumptions, we show that the Schrodinger equation 
for the case under consideration can be reduced to the ordinary Mathieu differential 
equation. By considering the analytical properties of the solutions, it is found that the 
eigenvalues of the Mathieu equation are continuous at low intensities and form narrow 
bands at high intensities. Hence we conclude that the allowed energy eigenvalues also 
form bands as the intensity increases-by analogy with the formation of energy bands in 
the case of a periodic perturbation. We also propose experiments to observe this new 
effect. 

2. Theory 

In the following we consider the problem of the interaction of a non-relativistic charged 
free particle with an external plane wave field. The experiment we have in mind is the 
interaction of slow (e.g. thermally emitted) electrons with an intense light pulse (e.g. a 
mode-locked picosecond wavetrain). The corresponding Schrodinger equation 
describing steady-state behaviour can be written in the following form: 

a y  
e 1’ a t  

-(p. - - ~ ( v )  W. = ih- 
2m c 

1 

where 
A(v)=Ao(e lcos  v+e2s in  v), v = w ( t - nx/ c ) . (2) 

Here e is the charge, m the mass of the free particle; el  and e2 are polarisation vectors of 
the electromagnetic field, w its frequency; n is the unit vector in the direction of the 
wave propagation. For the sake of simplicity we use a circularly polarised external field, 
because then A2(v) = A i  is simply a constant. This assumption is not essential for, by 
using linearly polarised light instead of Mathieu’s equation, one would arrive at Hill’s 
equation, and the considerations about the band structure involved in the Mathieu 
solution remain essentially unchanged, but become slightly more difficult. After this 
explanation of the model, we introduce the following ansatz, i.e. we look for the 
solution of (1) in the form 

f (U), E =p2/2m, (3) q,(*, t )  = e( i /h) (~x-Er)  

the physical meaning of which is quite obvious. The wavefunction (3) describes a free 
particle modulated by the external field, and the modulation thus depends on the field 
variable v only. After substituting (3) in (l), one obtains the following ordinary 
differential equation for f(v): 

hw (e/mc)Ap - e2A:/2mc2 
?+i f ’+  f =o, uil= np/m.  

2mc2(1 - q / c )  hw(1  - q/c) 
(4) 

The coefficient of the second derivative is just the dimensionless ratio of the photon 
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energy to the pair creation energy; therefore, in the case of optical frequencies its value 
is very small (of the order of Thus, if we neglect the first term on the LHS of ( 4 ) ,  
the remaining first-order equation can be solved exactly. Essentially this procedure was 
followed by Ehlotzky (1978),  and by using the solution of this first-order equation in the 
calculation of the multiphoton inverse bremsstrahlung cross section, he obtained 
corrections to the well known formula obtained earlier in the dipole approximation. 
However, in the case of extremely high intensities the inclusion of the second derivative 
term can lead to new effects, for the following reasons. In ( 4 )  the ratio of the first 
derivative to the zeroth derivative is approximately equal to the ratio of the interaction 
energy to the photon energy: 

f’ ( e / m c ) A p  - e 2 A : / 2 m c 2  
171- h w ( l - q / c )  

and the ratio of the second derivative to the first one is again the same. Therefore the 
magnitude of this ratio can compensate for the smallness of the coefficient of the second 
derivative. From here we may conclude that at very high intensities of the external field 
one has to retain all three terms on the LHS of (4) and look for an exact solution of it. 

We may proceed in the following way. Notice that the coefficients of both f’ and f” 
are constant; therefore, by introducing the substitution 

the first derivative from ( 4 )  can be eliminated, and we arrive at the standard form of the 
Mathieu ordinary differential equation 

g” (z )  + ( U  - 2q cos 2 z ) g ( z )  = 0 ( 7 )  

where the following notations have been introduced: 

Furthermore, it is easy to see that pL is a constant of motion, since the operators = el@ 
and e2 = e2@ commute with the original Hamiltonian. Therefore the parameter q is 
completely determined by the experimental conditions, and thus the only free 
parameter in (7) is p11= np. The general solution of ( 7 )  can be written in the form 
(Arscott 1964) 

g ( z )  = A  e-”‘q5(z)+B e’”*q5(-z). (8) 
Here A and B are two constants, p is the characteristic exponent and + ( z )  is a 7r 
periodic function of z. The characteristic exponent can be given quite generally in the 
form p = S + ip. By direct substitution of this expression into (8)’ one can observe that 
for z -* &CO the solution g ( z )  becomes unstable, provided that S # 0. For a physically 
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A(ip) = 

* .  
7 - 2  1 Y-2 

Y o  1 Y o  
Y2 1 Y2 

. . .  

Figure 1. Stability diagram for Mathieu’s equation. Stable regions are shaded; the rest of 
the a-q plane is unstable. 

As q is entirely determined by the parameters of a given experiment-once the 
intensity and the frequency of the external field as well as the transverse momentum of 
the incoming electron, which is a constant of motion, are fixed, no free parameters in q 
are included-from figure 1 one can conclude that the possible U-values form bands. 
The only free parameter in the expression of a being pll, the possible p11 values also form 
bands. Also from figure 1, one can see that the possible a -bands become narrower and 
narrower as q increases, and in the limit of large q they can be approximated by the 
following analytical expression: 

a = -214 + 2(2n + l)lqlt’2. ( 1 0 )  

Under usual experimental conditions the above expression holds almost completely, 
and by substituting here the expressions ( 7 a )  and (76) for a and q we obtain the allowed 
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mi-values. The separation between neighbouring bands Am1 =pi"+')  -pi"' can also be 
calculated easily, and for the relative separation we obtain finally the following 
approximate formula, 

which is valid for high intensities and for n << 2mc2/hw, that is, the slow n dependence of 
the relative separation can be neglected. It is easy to show from (3) that the relative 
separation of the allowed energy bands is connected with (1 1) in a simple way: 

W E  = 2APII/PII. (12) 

If, for example, the intensity of the light field is 1014 W cm-' the relative energy 
separation becomes 10-3-10-4, that is, in the case of non-relativistic electrons (E - 
1 eV) the separation between bands falls into the microwave region. Furthermore, 
from (11) and (12) the separation is a slowly varying function of the light intensity ( I ) :  

A E - P ~ .  (13) 

Therefore, in most optical experiments available with the present experimental status, 
the energy'separation will similarly fall into the microwave region. 

3. Discussion and summary 

In intense field electrodynamics (IFE) it is very important to obtain exact or approximate 
results in analytical form. One of the central problems of IFE is the interaction with free 
charged particles. The application of such analytical results in high-intensity problems 
led to the discovery of a series of interesting effects such as, for example, the optically 
induced level structure called Volkov states (Volkov 1935, Eberly 1968) and intensity- 
dependent mass shift of free electrons together with intensity-dependent corrections to 
the Compton scattering (Brown and Kibble 1964, Nikishov and Ritus 1964) etc. 

Our aim in the present paper was to give an exact result for the problem of a 
non-relativistic free electron interacting with a classical electromagnetic plane wave. 
We have shown that this problem can be reduced to the solution of a Mathieu-type 
equation. The wavefunction then has the general form as given by equation (8). By 
considering the stability properties of the solutions, from the eigenvalue equation of 
Mathieu functions, we deduced that the eigenvalues leading to stable solutions are 
continuous at low intensities and form bands (optically induced band structure) as the 
intensity of the external field increases. A similar band structure for relativistic 
electrons was predicted by Berson and Valdmanis (1973) in the field of two counter- 
propagating circularly polarised waves, by Cronstrom and Noga (1977) and by Becker 
(1977) in a refractive medium. For the non-relativistic problem, however, to our 
knowledge this is the first case where the possible existence of a band structure is 
predicted. Experimentally, this could be observed in the following way. A very 
low-energy monochromatic electron beam populates the lowest band only when a 
high-intensity optical field is switched on. Therefore a microwave radiation in 
resonance with the nearest band would be absorbed as a result of interband transitions. 
Difficulties may, however, arise from stability requirements both for the optical field 
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(frequency and intensity stability) and for the electron beam, and these strict require- 
ments can make observation of the effect more difficult. 

Let us now proceed to the discussion of the limiting cases of our theory. If, as usual, 
in (4) we neglect thef” term, the remaining first-order equation can be solved exactly by 
direct integration. The result is 

Exactly the same wavefunction was applied in calculations beyond the non-relativistic 
dipole approximation (Ehlotzky 1978, Nickle 1966). The approximation which leads tr 
this result is well justified at low ancl medium intensities by the smallness of the 
coefficient of the f” term in (4) having the numerical value 10-5-10-6 at optical 
frequencies. However, all the interesting new results including band structure come 
from this term, and as we discussed in the considerations after ( 5 ) ,  at extremely high 
intensities this term may become important. Furthermore, the exponent of the 
wavefunction (14) contains a periodic function of v, and if we expand it into Fourier 
series of e*in” we see that the Volkov-type level structure is reobtained with energy 
spacing equal to ho and momentum spacing equal to Zrk. Exactly the same result can be 
obtained from the nr n-relativistic limit of the solution of the Klein-Gordon equation. 
The connection between (14) and the exact Mathieu solution (8) can be seen most easily 
by invoking Hill’s method (Arscott 1964). The Fourier expansion of the e”q5(z) 
Mathieu function reads 

Introducing this expansion into the Mathieu equation (7), we arrive at the following 
recurrence relation for the c2, coefficients: 

At optical freguencies the parameter a is very large (-10”) and also la/ql>> 1. In this 
case -ip = Ja, and by introducing the notation c2 ,  = d,, from (16) we obtain 

2rd,l(-$q/Ja) = dr+1+ dr+t (17) 

and this is just the recurrence relation for Bessel functions of order r (Abramowitz and 
Stegun 1964), having the solution 

The coefficients in the Fourier expansion of (14) are the same Bessel functions with the 
same argument. This shows the connection between our result and earlier works and 
completes the discussion. 
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